首页

AD联系:507867812

AG备用网址

时间:2019-12-13 21:09:48 作者:ag8游戏 浏览量:31650

AG备用网址锂电池极片机械性能测试方法汇总图2纳米压痕测试中典型的载荷-位移曲线

  2、拉伸测试

,见下图

,见下图

  图13是两种不同工艺的硅基负极在不同载荷作用下划痕扫描电镜照片,通过研究划痕测试实验数据,可以比较负极极片的机械稳定性,推断电池的循环寿命和性能。

  图12划痕试验仪的一般操作示意图。在进行划痕试验期间,由金刚石或其它硬质材料制成的划针沿涂层表面线性划线,同时施加恒定或者逐渐增加的载荷。其结果是,划针划入涂层,到达涂层界面或穿过涂层到达基材界面。涂层和基材体系会产生内聚和附着失效。检查直接从划痕试验以及划痕后显微分析获得的数据可得到有关涂层本身和涂层–基材体系的有用信息。

  6、划痕测试

,如下图

  6、划痕测试

如下图

,如下图

  图1是纳米压痕测试原理示意图以及锂离子电池负极极片压痕的扫描照片,测试时,对压头施加载荷P,压头压入样品中,卸载后在样品表面留下压痕。图2是纳米压痕试验中典型的载荷-位移曲线。在加载过程中试样表面首先发生的是弹性变形,随着载荷进一步提高,塑性变形开始出现并逐步增大;卸载过程主要是弹性变形恢复的过程,而塑性变形最终使得样品表面形成了压痕。图中hc是接触深度,ht是最大载荷时的位移,ε是与压头有关的仪器参数。由图2可知,载荷从0逐渐增加到最大载荷30mN,随后载荷基本成直线下降,此时该直线的斜率即为该试样的接触刚度S。通过测量压入载荷P、压痕表面积A以及接触刚度S就可以计算得到硬度H和弹性模量E。

  6、划痕测试

,见图

AG备用网址  锂离子电池极片是一种由电极涂层和集流体箔材组成的三层结构复合材料,即颗粒组成的涂层,均匀的涂敷在金属集流体两侧,主要由四部分组成:(1)活性物质颗粒;(2)导电剂和黏结剂相互混合的组成相(碳胶相);(3)孔隙,填满电解液;(4)金属箔材集流体。

  图1是纳米压痕测试原理示意图以及锂离子电池负极极片压痕的扫描照片,测试时,对压头施加载荷P,压头压入样品中,卸载后在样品表面留下压痕。图2是纳米压痕试验中典型的载荷-位移曲线。在加载过程中试样表面首先发生的是弹性变形,随着载荷进一步提高,塑性变形开始出现并逐步增大;卸载过程主要是弹性变形恢复的过程,而塑性变形最终使得样品表面形成了压痕。图中hc是接触深度,ht是最大载荷时的位移,ε是与压头有关的仪器参数。由图2可知,载荷从0逐渐增加到最大载荷30mN,随后载荷基本成直线下降,此时该直线的斜率即为该试样的接触刚度S。通过测量压入载荷P、压痕表面积A以及接触刚度S就可以计算得到硬度H和弹性模量E。

图1(a)纳米压痕测试示意图;(b,c)负极极片压痕扫描照片

  图7锂离子电池的(a)负极和(c)正极拉伸应力-应变曲线,以及极片本构关系的模型拟合

  5、剥离测试

  极片的机械稳定性对电池有重要影响,特别像硅基负极,在充电/放电周期内插入和脱出锂时,体积变化达到270%,循环寿命差。这个体积膨胀会导致硅颗粒的粉碎,以及涂层从铜集流体中分离。

  涂层剥离强度是指涂层与基体之间单位面积涂层从基体材料结合面上剥落下来所需要的力。它是检测涂层性能非常重要的一个指标。若结合强度过小,轻则会引起涂层寿命降低,产生早期失效,重则造成涂层局部起皮、剥落无法使用。

AG备用网址  一般测试方法,将极片分条,压敏3M-VHB双面胶贴在电极表面,另一面贴在不锈钢板上,将不锈钢板和集流体固定在拉伸设备的两个夹具上,然后以一定的速度拉伸样品,进行180度剥离测试,当铝集流体被完全剥离下来时检测到的力就是剥离力,测试原理如图11所示。

  涂层剥离强度是指涂层与基体之间单位面积涂层从基体材料结合面上剥落下来所需要的力。它是检测涂层性能非常重要的一个指标。若结合强度过小,轻则会引起涂层寿命降低,产生早期失效,重则造成涂层局部起皮、剥落无法使用。

  4、弯折测试

图12划痕试验仪的一般操作示意图。

  拉伸试验是指在承受轴向拉伸载荷下测定材料特性的试验方法。利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。

  图7是锂离子电池的(a)负极和(c)正极拉伸测试的应力-应变曲线,根据这些测试数据推断锂离子电池极片的本构关系,并将这些极片的拟合模型应用于锂离子电池的模拟计算中,研究电池的机械性能。

1.

图10弯曲试验加载及记录的载荷挠度曲线示意图

  1、纳米压痕

  拉伸试验是指在承受轴向拉伸载荷下测定材料特性的试验方法。利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。

  拉伸试验是指在承受轴向拉伸载荷下测定材料特性的试验方法。利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。

锂电池极片机械性能测试方法汇总

  图1是纳米压痕测试原理示意图以及锂离子电池负极极片压痕的扫描照片,测试时,对压头施加载荷P,压头压入样品中,卸载后在样品表面留下压痕。图2是纳米压痕试验中典型的载荷-位移曲线。在加载过程中试样表面首先发生的是弹性变形,随着载荷进一步提高,塑性变形开始出现并逐步增大;卸载过程主要是弹性变形恢复的过程,而塑性变形最终使得样品表面形成了压痕。图中hc是接触深度,ht是最大载荷时的位移,ε是与压头有关的仪器参数。由图2可知,载荷从0逐渐增加到最大载荷30mN,随后载荷基本成直线下降,此时该直线的斜率即为该试样的接触刚度S。通过测量压入载荷P、压痕表面积A以及接触刚度S就可以计算得到硬度H和弹性模量E。

2.

3.

  2、拉伸测试

  极片的机械稳定性对电池有重要影响,特别像硅基负极,在充电/放电周期内插入和脱出锂时,体积变化达到270%,循环寿命差。这个体积膨胀会导致硅颗粒的粉碎,以及涂层从铜集流体中分离。

  3)强化阶段:这个阶段是塑性硬化阶段,电池极片没有观察到这个阶段。在f点对应的应力峰值为抗拉强度。

4.  图8 锂离子电池的(a)负极和(c)正极压缩测试应力-应变曲线,以及极片本构关系的模型拟合

图12划痕试验仪的一般操作示意图。

  图7锂离子电池的(a)负极和(c)正极拉伸应力-应变曲线,以及极片本构关系的模型拟合

  4)局部变形阶段:此时样品会发生缩颈现象,直至断裂。

  采用微机控制电子万能试验机可进行拉伸试验、压缩试验、剥离试验、撕裂试验以及剪切与弯曲试验等。

  3、压缩测试

。AG备用网址

展开全文
相关文章
ag在线

  图3锂离子电池(a)正极和(b)负极多次纳米压痕测试载荷-位移曲线,以及(a)正极和(b)负极不同压入深度测试对应的弹性模量

环亚国际平台

....

万博体育app

  极片拉伸断裂过程如图6所示。

....

环亚app

  在研究锂离子电池极片本构关系模型时,为了更全面地认识极片的力学性能,在对极片做拉伸的同时,也常常对极片做压缩测试,图8是锂离子电池的(a)负极和(c)正极压缩测试的应力-应变曲线,以及极片本构关系的模型拟合。根据极片的拉伸和压缩实验测试数据构筑极片的本构模型,再将模型应用于研究电池组装工艺中的极片断裂行为,实验和模拟对比结果如图9所示。

....

虎途国际官网

....

相关资讯
热门资讯